Contemporary microprocessor designs are based on pervasively shared mutable state. This introduces numerous vulnerabilities that have been exploited to violate the security of our computing platforms. Mechanisms to mitigate these hazards, such as Memory Management Units (MMUs), increase the complexity and power-consumption of CPUs. The movement to multicore processors amplifies the problem and adds more […]
Memory Safety Simplifies Microprocessor Design
Computer Security Breaches Are Preventable
Security system breaches resulting in exposure of large quantities of sensitive information have become increasingly common. As data-hungry enterprises aggregate larger and larger caches of sensitive information, the damage from the inevitable breaches becomes more significant and far-reaching. Is there something fundamentally wrong with the design of our security systems? Can these risks be mitigated? […]
Distributed Security
Within a single address-space, the capability-security properties of actor references are guaranteed by the actor run-time. Memory-safe implementations of actor languages ensure that actor references cannot be forged. Having a reference to an actor means you have permission to send it a message. A single machine may host multiple independent actor address-spaces, each of which […]
Towards a Universal Implementation of Unforgeable Actor Addresses
[It is my pleasure to welcome my colleague and collaborator, Tristan Slominski, as a guest-blogger -Dale] 2017-02-07 EDIT: A previous version of this article used the term Domain instead of Realm. In the popular implementations of the Actor Model, actor addresses are usually globally available to any other actor desiring to discover them. However, in […]